
NOTATION 

tv, time for establishing the motion; D, a characteristic size; v, velocity of convec- 
tive motion; v, kinematic viscosity; H, dynamic viscosity; Cp, heat capacity; k, coeffi- 
cient of thermal conductivity; ~, coefficient of absorption of radiation; X = k/(pCp), co- 
efficient of thermal diffusivity; p, density; Pe = vD/x, Peclet's number; Re = vD/v, Rey- 
nolds number; Pr = ~Cp/k, Prandtl's number; and z, height of the column of liquid. 
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FLOW OF MONOTONIC RAREFIED GAS ALONG THE CLOSED PART 

OF THE CONTOUR OF A SLOT CHANNEL 

P. A. Novikov and L. Ya. Lyubin UDC 533.6.011.8 

The asymptotic behavior of flows of strongly rarefied gas in a slot channel 
is constructed, and the region of applicability of the results obtained is 
determined for different cases of flows. 

The asymptotic behavior of flows of the Heel-Shaw type constructed in [i] for a planar 
slot channel is unsuitable for describing he motion of rarefied gas near closed and open 
parts of the cylindrical surface S bounding the slot channel along the contour. 

To analyze flows within the boundary layer formed near the open part of the contour of a 
slot channel, a dimensionless orthogonal coordinate system $ = Xl/H , q = x2/H , ~ = xs/H is 
introduced, where x i is measured along the contour F, corresponding to the intersection of 
the surface S with the median plane S o of the channel, x 2 is the coordinate along the normal 
to the contour F in the plane So; x 3 determines the distance of this point from the plane So, 
and, H is the height of the slot channel. One can talk about the asymptotic behavior of the 
boundary-layer type if the effective width b of the layer in which the effect of the "special" 
characteristics is significant is much smaller than the scale L of the flows in the plane So, 
i.e., b/L ~ i. It is evident that the curvature K of the contour F is of the order of L -i 
(or less). Thus, bK ~ i, while AK = O(KnL). For this reason, in order to obtain an idea of 
the characteristic features of flows in a boundary layer, only the first term of the expan- 
sion introduced in [i] with respect to the small parameter Kn L need be retained, neglecting 
the curvature K, and therefore, the curvature of the coordinate lines n = const, i.e., the 
flow may be regarded as local, assuming that outside the boundary layer (N + ~) the flow 
along the ~ axis is uniform. In other words, the flow of a rarefied gas along the $ axis is 
studied in the region -~ < $ < =, 0 < q < ~, -0.5 < ~ < 0.5. 

As will be shown below, flows of rarefied gas in a slot channel have the property that 
the long-range action, which consists of the fact that for Kn H ~ 1 the effect of the boun- 
dary S extends to distances much greater than the height of the channel (b ~ H), while in 
the continuum limit Kn H + 0, b = O(H). This makes it possible to restrict the analysis to 
states corresponding to values ~ = ~H/3A + 0, when the behavior of the gas is described 
quite well by any model equation, including the simplest linearized Bathanger, Gross, Crook 
(BGC model) model [2] 
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~u af~ + o  a-~n +w a# = = { f o o [ l + v  +(us+os+ws--~)~+2<u>u]--[} �9 (i) 

Here, for convenience, the ~ axis has been specially distinguished. 

For simplicity it is assumed that the molecules reflected by the walls in the coordinate 
system fixed in the plates forming the slot channel have a Maxwellian distribution, corres- 
ponding to the local temperature of the wall Tw(~, ~), i.e., the boundary condition 

f(~, ~ = ___ 0.5, w ~ O )  = nw(r)~-S/2h~/2 (~)exp [--  hm (r)v s] (2 )  

h o l d s .  

The unknown distribution function is sought in the form of the perturbed absolutely 
Maxwellian distribution 

f ~- [oo [l +'~w + (Us + ~ + ws----3) Tw + *] �9 (3 )  

If absorption and emission of molecules do not occur at the walls of the channel, while 
the temperature of the walls depends linearly on 6, then, as usual, in the analysis of one- 
dimensional flows in a planar slot, symmetric with respect to the median plane, the varia- 
tion of the temperature and number density of molecules in the transverse direction can be 
neglected, i.e., it may be assumed that 8~/8~ = 0, 8v/8~ = 0. Then, by virtue of (i), the 
perturbation # will satisfy the equation 

eu-O~ + v , a n  + w  a--~ + ~q) + u  k~ + u s + o  s + w  s -  k ~ - - 2 ~ < u >  = 0 .  (4) 

Integrating the last equation from the bottom wall to the top wall and from the surface 
S(N = O) to an arbitrary poin t ri($, ~, ~) along the characteristics u-md~ = ev-ZdN = ew-Zd~, 
assuming that the mass velocity <u> entering into (4) is a known function of the coordinates, 
taking into account the uniform boundary conditions at the walls [~ = #~($, ~, ~ = +0.5, 
w ~ O) = O, ~ = ~2(~, q= O, ~, v > O) = O] we obtain 

�9 ~ (w>~O)=- -  j' u k~+ u ~+o  s + w  s -  k~--2~<u>(~',  ~') exp --  (~--~') - - ,  (5) 
:i:0,5 

q~2(v>O)=--bf " k~+ u s + v  ~ + w  s -  k~--2e(U>Ol',  $') exp - -~v  Ol--~f) d~l'v 

The moments co r r e spond ing  to  t he  hydrodynamic f low pa rame te r s  a r e  c a l c u l a t e d  us ing  the  
formula 

_ _ ~  - - c o  

• exp (-- w s) dw S ~ exp (--  v ~) do + exp (-- m s) dw • 
o ~n/~o,~+;~ - -  (6) 

i ~ --o(o,5--;)/n 
x * ~  Sexp(--vS)dv[ S **~exp(--w=)aw+ 
--m~l(0.5--D o --~ 

--v(0.5+~)/n --~ --~ 

For ~ = u, the last relation transforms into an integral equation for the mass velocity 
<u>(~, ~) near the closed part of the frame of the slot channel, containing in the integrand 
the unknown function <u>(q', ~') = <u>[~-v/w(~ - ~'), ~'] multiplied by the coefficient ~. 
It will be shown below that when ~ << 1 within the "boundary" (kinetic) layer the velocity 
averaged over the height of the slot channel increases almost two-fold. For this reason, in 
order to estimate the effect of this layer on the flow in the slot channel it is desirable 
to determine its effective width, introducing the displacement width b, by analogy with the 
displacement width used in the Prandtl boundary-layer theory for a viscous liquid with Re >> 
i. A strict definition of this quantity will be given below, and it will be known that when 
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a G 1 b, ~ H. It is under these conditions that the significance of the kinetic layer 
under study is manifested and one can talk about the effect of long-range action in a flow 
of rarefied gas. But in the limit a § 0 the role of the term 2a<u>(N', ~') in the inte- 
gral equation, obtained from (6) using (5), becomes insignificant. Indeed, the linearity 
of the problem under study implies that 

< u > = k~U~ (~, ~) + k~U~ (n, ~), U~,~ = U~,~ ( ~ ,  ~) +'SU~,~ (~, ~). (7) 

Here Uv,x(~, ~) corresponds to the flow outside the boundary layer under study, i.e., in 
the limit N + = 6Uv,x(q, ~) + 0. Substitution of the expressions (5) and (7) into (6) gives 
two integral equations for determining the dimensionless coefficients 6Uv(N, ~) and ~U~(~, ~), 
whose kernels have a logarithmic singularity at ~' = ~ (q' = q), like in the analysis of 
Poiseuille's flows between infinite plates. Therefore, following [3], in the functions 
Uv,x(q', ~') the arguments q', ~' can be replaced by ~, ~ and these functions can be removed 
from the integrand, which will make it possible to obtain the corresponding approximate solu- 
tion in an explicit form. For flows between infinite plates this approach gives results 
which are close to the exact solution, in any case for a~ 1 [3]. Here, however, we are in- 
terested in states corresponding to a ~ i. 

The functions Uv,x(N, ~, a) averaged over the height or the slot channel can also be 
represented by sums of the type 

0.5 

G,~ (n, ~) = I u~,~ (~, ~, ~) d~ = G,~ (~, ~) + ~G,~ (~, ~)- (8 )  

The i n d i c a t e d  s u b s t i t u t i o n s  and changes in the  o rder  of  i n t e g r a t i o n  in the  m u l t i p l e  in -  
t e g r a l s  lead to the following relations: 

5G,~(n, ~ ) =  5G,~(~, ~)- -2~G,~(  ~ ,  ~)SQ;(~, ~) . (9) 
1 + 2aSQ;(n, ~) 

~Qv (~, 0r = _ _ I  exp ( - -  v ~) dv exp (-- w 2) exp --  - - - -  N X 
~o~ o ~ v 

( @ )  w e x p ( @ )  ( o : ) ]  4 ~cexp --  _ + w exp d w = Z 6 Q j ;  
(10) 

'~Q$ 01, a) - 2 t' u~ u~ + v~ ~ ~ - -  exp ( - -  u ~) du exp(--vD dv • 

v(n I ( _ ~ )  W ( _ _ ~ _ ) W  e x p ( _ _ _ ~ _ ) +  • exp - -  - - - - ~ l e x p  - -  - -  (11) 
b v 

+ - -  exp - -  exp ( - -  w 2) dw = 5Q~j, 
i, / '=I 

where 6Qj corresponds to the j-th term in the brackets of the integrand in (i0), while 
6Qii corresponds to the product of the i-th term in the brackets of the first integral in 
(Ii] by the j-th term in the brackets of the latter: 

2V~-~ err exp --  dr, 
v ] 

(~Q~- vl [J_l (~n)__ J_l (~ ]/1 + ~l~ ], (12) 
2gcz 

~G = 1 ]4(o~n) 
2 ~  2 k 

nJo (~ v 1  + ,i c) ] 
],/1 + ~1 ~ ] 

~Q~ - 

2 VY~"- 
i [I -- erf (wN)] wexp (-- w~ -- @) dw. 
0 
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The values of the integrals /re(X): [vmexp{--v'-----~ ~dv 
. 

0 

At the boundary q = O 

I 
~Q~ = - - ~ - ,  ~Q~ = O, ~Q~ = 

and in the limit ~ ~ O, as shown in [5]: 

are tabulated in [4]. 

1 , 6 Q ~ =  J~(a)  

J~(a)=  2 ~ ~ - - 2 -  l n ~ - -  + . . .  (13) 

Thus f o r  l a r g e  Kn H numbers (Kn H (~ + 0) on the  s u r f a c e  S of  t he  frame (q = 0) 

, (  +)+ 6Qv (0, a) _ 4 V ~  In o~-- = Q,~ (oo, a). (14) 

Here qv (~,  a)  c o r r e s p o n d s  to  t h e  a s y m p t o t i c  r e p r e s e n t a t i o n  of  t he  s o l u t i o n  of  t he  problem 
of  a P o i s e u i l l e  f low between i n f i n i t e  p l a t e s  f o r  t h e  BGC model [2] in  t he  l i m i t  a § 0. 

I t  i s  easy  to  show t h a t  6Q~j + 6Q~j = 0 ( j  = 1, 2, 3, 4 ) ,  wh i l e  

1 i erf ( 1 )  exp ( _  v~ " ~rl )v,do, 
~Q~x= 2 l / ~ - a  o v 

(+) ( ) 1 eH exp --v~ o~1 do ~lJx (~]/~1 ~ + 1 ) 
~ - V - ~ ~  o o 2 a ~ ( n '  + 1) 

~ j a ( a V ' ~ i  ' + 1) 
- ~  A(~.n) + - 2 ~  (,i ~ + 1) ~Q~ = 2~a  

2u~z ~12 + 1 ' (15) 

[ ,] 1 j~ (.~rl) __ rlaJ~ (a l /~1  ~ + 1 
~Q~s = 2ar162 - - ( r l ~  + 1) ~/2 ' 

(SQ~ = 1 Jo (a~l) 
2 z ~  ~ r / rl ~ + 1 (rl + 1) ~/~ J' 

2 ~  0 w 
wdw + (~1 ~ + 1) 3/2 J 

At the boundary S(n = 0). 

4 1 _ + 1 [2J1 (a) + 44 (a) -- 31. 

i ,]=1 

In  t he  l i m i t  ~ * 0 t he  a s y m p t o t i c  fo rmulas  (13) and J3 (a )  = I / 2  - ~ ] 4  a + a2 /4  + . . .  can 
be used ,  which makes i t  p o s s i b l e  t o  r e w r i t e  t he  l a t t e r  r e l a t i o n  in  t he  form 

6Q~ (0, ~)~-- 8l/~--I ( l n ~ -  ~-3 ) = ~ - 1  Q,~ (e~, ~). (16) 

Here QT'( ~, a) corresponds to the asymptotic representation of the solution of the problem 
of a flow between infinite plates under the action of a temperature gradient with k v = 0 [6]. 
It is evident from the relations (9), (14), and (16) that in the limit a ~ 0 in the boundary 
layer the average macroscopic velocity increases approximately twofold. For large Kn H num- 
bers, as is evident from the table, Qv z Qv*- The latter circumstance is an additional jus- 
tification for replacing the integral equation by a finite expression for the macroscopic 
velocity, i.e., removing this velocity from the integrand, since the contribution correspond- 
ing to this term to the function Qv(q, ~) is very small. 
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TABLE I. Values of the Functions qv/Qv~ and Qv*/Qv~ as a 
Function of the Kn H Number 

0 
0,1 
0,5 

1 
4 
8 

14 
30 
60 

Kn H : 30 

Qv/Qv~ Qv/Qv~ 

0,4880 0,5000 
0,5390 0~5509 
0,6489 0,6597 
0,7140 0,7237 
0,8459 0,8521 
0,9020 0,9062 
0,9389 0,9416 
0,9742 0,9755 
0,9916 0,9920 

K n H = 6 0  

Qv /qw, QvIQv= 

Kn H = 100 

Qv/Qv~ 

0,4925 0,5000 
0,5375 0,5450 
0,6340 0,6410 
0,6919 0,9983 
0,8131 0,8176 
0,8685 0,8719 
0,9081 0,9105 
0,9514 0,9527 
0,9788 0,9637 

0,4953 
0,5365 
0,6250 
0,6783 
0,7915 
0,8452 
0,8849 
0,9315 
0,9637 

Qv/qv= 

0,5000 
0,54ii 
0,6293 
0,6824 
0,7946 
0,8476 
0,8868 
0,9327 
0,9644 

The indicated property substantially simplifies the calculation of the displacement 
width of the boundary layer b,, which by analogy with the displacement thickness of a Prandt! 
boundary layer of a viscous liquid, we define by the relation 

b, [0,(0% ~)k, + G(oo,  ~)G] = H[&(~)k ,  + &k,], 

0 

~ = i ~O~ (~, a) d~l, 
0 

Here the  f u n c t i o n s  ~Qv,r a re  r ep l aced  by 6Q~,~. 

Az : 2a~z ~1 [ ~  Jo(~)], A 2 = - -  

1 

2 n ~  ~ 

4 3 4 

j = l  i=2 i=l 

aii= i 5Qi; (rl, ~) d% 
0 

By virtue of (12) and (15). 

1 2 ~ (  [J~ (0) -- oG (~) -- J~ (~)I, 

[J,  (a) -- ~q (o)], A~ = 4 (a) , 
2~a~ 

A~I 2~a2 2 

1 

2n~2 

A31 : - -  -- G (=)], 

= - -  { 4  (~) + J~ !~) - -  1 + ~ [G (~) + Jo (~)l}, 

1 
A23 + A33 = 

2Yf~ 2 
[ 4  (~) + J~ (~) - 4 (0) - A (o)1, 

2 ~ z  2 2z~z ~ 

(i7) 

(18) 

Using the asy~nptotic formula (5) for the integrals Jm(a) in the limit ~ + 0, we obtain 

A 1 ~ - - - -  
- - 1  I n ~  - 0,5 In a A~ ~ ,  In a § 0,5 A~ .w, - -  - 

2 ~  ' 4 ~  ' -4  V T ~  4ha  

A~ ,~, �9 1 In a In ~z 1 
4 r ~ E - d 2  + 2 - - ~ a '  A ~ - - ~ ,  6 ~  - - ,  2 ~  4n~z ( 1 9 )  

E I In ~z A23 + A~ ~ ~ 4 --if- ' 4a~: ' + (in ~ - -  1) 

A~+A3~,~ ~ 4 + ~ l n ~ - -  - . 

Thus for large Kn H (~ ~ i) numbers 5 v = A x z (4~) -~, and therefore the following for- 
mula for the displacement width follows from the relation (17) 
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'~,)oo 

I q5 ~'/4 

Fig. i. Variation of the velocity 
of the gas, averaged over the 
height of the slot channel, with 
a relative channel width of n0' = 
b0/H = 60 and Knudsen numbers Kn H = 
30 (i); 60 (2); i00 (3); for n0' = 
20 and Kn H = 30 (4); 60 (5) and 
100 ( 6 ) .  

b,  = - - A , I ( 1 - - 0 ) Q v |  § OQ,~]-~H, 0 -= k,  
kn 

ku = kv + k,  = 1 dp (20 )  
p ct[ 

But in the limit ~ + 0 

Therefore 

l n u - -  0,5 l n ~ - -  1.5 
Q~.. ~ , Q~.. ~ . ( 2 1 )  

2 ~'--~" 4 V"~-- 

( [ 0 ( 2 - - 0 ) l n a  (22 )  
/-/ 

- { [  ~ F 
b,  ~ 3  u~ l + -~ -  - -  (2 - -  0) lno~ . 
% (23) 

In the limit ~ + 0 b,/H + ~, as (~ in ~)-l (long-range action effect). In the limit 
8 + -~, ~ = const b,/l + 0, b,/H + 0. 

Once the displacement width b, is determined, different problems concerning flows of a 
rarefied gas in a slot channel with 0 < Kn H < = and Kn L ~ 1 can be solved. All results ob- 
tained above are valid under the condition that the displacement width b,, determined by the 
formulas (22) and (23), is much smaller than the linear scale L, characterizing the unper- 
turbed, or external relative to the boundary layer under study, flow in the symmetry plane 
of the gap. For example, for a slot channel formed by two semiinfinite plates, whose edges 
are connected by a flat plane (y = n = 0), while the gradients of the number density of the 
molecules and temperature are everywhere parallel to the indicated edges, the scale L = 
and the proposed asymptotic behavior is valid for arbitrarily large Kn H numbers. If, on 
the other hand, the corresponding edges of the plates are connected by perpendicualr plates 
with a cylindrical surface, then the scale L must be taken as the minimum value of the ra- 
dius of curvature of the line of intersection of the plates with the cylindrical surface 
and the region of applicability of the results obtained above is limited above by the num- 
ber Kn H ~ KnH, , where KnH, is determined by the value b, = L, calculated from the formulas 
(22) or (23). 

For the flow of a gas in a planar channel of finite width the corresponding width b 0 is 
the scale (L = b0). In the latter case, it is easy to pass through the above-indicated 
limit, and exceed the boundary-layer approximation. The geometric simplicity of such a 
channel makes it possible to take into account the effect of all walls at any point of the 
transverse cross section. For this, the boundary conditions presented above, must be sup- 
plemented by conditions on the lateral wall: y = b 0 = L (~ = nQ = b0/H), ~ = ~(v < 0) = 0. 
Then the elements of the phase space, corresponding to characteristics which begin on the 
lateral wall n = no, correspond to the perturbation 0~(u, v, w, ~, n, ~) = #2( u, vx, w, Nx, 
~), where v I = -v, nl = no -n, while the moment of any hydrodynamic parameter ~ can be 
written in the form 

l i e x p ( - - u 2 ) d u { ~ e x p ( - - w ~ ) d w x  
M ( r  ~__. 0 
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• 
w~l(O,~+~) 

+ 

--v(o, 5--~)In 
X [ S *0~ (v, n) exp (--w~) dw -k 

*q)= (v, ~1) exp (--v ~) de + " .I 1~(I)~(~1, ~h)exp(--v~)dv~] + 
wnd(o,5+~) 

0 ~o 

j' exp (--w=)dw [ .f ,q)~ (v, ~I)exp (--v ~) dv + 
--== --w~l ( O . 5-~) 

i ~ 
--w~h/(O, 5--~) 0 

i *q)~ (v, ~1)exp (--w ~) dw] + 
v(O, 5+~)/~ 

--~dO, 5--~)/~h 
"3V ?exp(--U21)dUl[ ff *(I)l(NI' ~h)exp(--w~)dw + ,~ 

o --~ ~(O,5+~)/n, 

exp ]}. 

(24) 

From a comparison of this expression with the expression (6) or the boundary-layer ap- 
proximation we obtain formulas for the local velocities and the velocities averaged over the 
height of the channel: 

u, .~  (~, ~, oO = u~. ~ (~, oO + ,~u$.~ (% ~, ~), 

Q.,~ 01, ~) ---- Qv,~- (e) + aQ~ a), (25) 

~O~, ~ (% ~) = 6Q~,~ (% a) + 6Q~, ~ (n~, ~). 

Thus the functions 5Uv,%, 6Qv,T , determined above, can be used not only in the boundary- 
layer approximation, but also for calculating the velocity field in a planar channel, whose 
width b 0 is comparable and even less than the displacement width b,. The results of this 
calculation are presented in Fig. i, whence it is evident that for large Kn H numbers decreas- 
ing the relative width of the channel N0 effectively reduces the value of the gas velocity 
averaged over the section. As the relative width of the channel is increased or Bond's 
number Bo H is decreased, the profile of the velocities averaged over the height of the chan- 
nel is appreciably straightened, and a steep boundary layer forms at the side walls. 

NOTATION 

H, height of the slot channel; L, linear scale in the median plane, Kn H = k/H; Kn L = 
k/L; X, average mean-free path length of the molecules; e = /~ H/31; f, distribution function; 
f00, absolute Maxwellian distribution; f00 = n*/2~RT, ex_p(-V2/2RT,); V, instantaneous velo- 
city vector of the molecules V = Vj-~, u = JhV1, v = Jh V 2, w = /h V3; h = (2RT,)-z; xz, 
x 2, x3, Cartesian coordinates: xl, along the contour, x2, distance from the contour, and x3, 
distance from the median plane of the slot channel; ~ = xl/H; ~ = x2/H; ~ = xa/H; T,, charac- 
teristic temperature; n~, characteristic number density of the molecules; T, temperature; n, 
number density of molecules; ~ = (n - n,)/n,; �9 = (T -T,)/T,; k~ = 8v/8~; k~ = 8~/3~; <u>, 
macroscopic gas velocity oriented along the ~ axis; r perturbation of the distribution func- 
tion; Uv(q, ~), Ux(N, ~), 6Uv,x(N, ~), velocity coefficients defined in (7); Qv,~(n, r and 
6Qv,T(N, ~), are the coefficients defined in (8); 6Qj and 6Qii , coefficients defined in (i0) 
and (ii); Qv~ = Qv,T(~, a); b,, displacement width o~ the boundary layer; @ = kT/kii; kii = 
(i/p)(Sp/S$) = k~ + kx. 
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